

## Corrosion Mechanism of Zn-4.8wt.%Al Galvanising Metallic Coating; Surface and Cut-edge

#### **Callum Gallagher BEng**

Academic Supervisors: Prof. James H. Sullivan, Dr. David Penney Industrial Supervisors: Dr. Peter Barker, Dr. Patrick Dodds



Swansea University **Prifysgol Abertawe** 





Engineering and Physical Sciences **Research** Council





Welsh Governmen

**Cronfa Gymdeithasol Ewrop** European Social Fund





- Performing research at Swansea University in partnership with TATA Steel
- Elucidating the corrosion mechanism of Zn-4.8wt.%Al



- TATA Steel's premium building system product that goes by the name Galvalloy<sup>®</sup>
- 40 years warranty upheld by TATA due to confidence in the alloy's performance
- Allows a reduced coating weight whilst providing better corrosion performance in comparison to traditional hot dip galvanized steel

## Microstructure





Primary Zn Dendrites

Zn-Al Binary Lamella Eutectic





- Performing research at Swansea University in partnership with TATA Steel
- Elucidating the corrosion mechanism of Zn-4.8wt.%Al
- Using a combination of novel and electrochemical techniques:
  - Time-lapse microscopy
  - OCP (Open Circuit Potential), Potentiodynamic and RDE (Rotating Disc Electrode)



• The initial technique was a trial and basic





- MATERIALS AND MANUFACTURING ACADEMY
- The initial technique was a trial and basic
- The second design was more robust







- The initial technique was a trial and basic
- The second design was more robust
- The third design was simple, required less components, solved some issues, but still has one









- The initial technique was a trial and basic
- The second design was more robust
- The third design was simple, required less components, solved some issues, but still has one



## Experimental Procedure



- Zn-4.8wt.%Al samples were metallurgically prepared to a 1 micron finish and etched using 3% Nital
- Cut-edge samples were submerged in HCl to strip the metallic coating to reveal the substrate
- The samples were immersed in 1wt.% NaCl pH 7
- Computer software captured images every 2 minutes

## Previous Time-Lapse Work MagiZinc







In-situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of Zinc Magnesium Aluminium (ZMA) alloys using novel time-lapse microscopy.

James Sullivana, Nathan Coozea, Callum Gallaghera, Tom Lewisa, Tomas Prosekb, Dominique Thierryb a College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP

b Instituit de la corrosion, 220 Rue Pierre Rivoalon, 29200 Brest, France













• Videos of the time-lapse, showing the corrosion of Galvalloy surface samples initiating corrosion in the binary eutectic lamellar phase (Zn-Al)

• Videos of the time-lapse with a 'cut-edge' effect showing corrosion initiating in the primary Zinc dendritic phase and within the nodule boundary



- During surface corrosion, the corrosion initiates in the binary eutectic:
  - Alumina patina (insulator)  $\rightarrow$  Binary eutectic
  - Zinc oxide (semi conductor) → Primary Zinc dendrites
  - The primary zinc dendrites will act as a site of cathodic activity driving the anodic dissolution of the binary eutectic
- During cut edge corrosion, the steel, a strong cathode, replaces the dendrites as the cathodic site and drives the corrosion throughout the alloy.
  - The dendrites appear to be preferentially attacked







# Galvalloy Surface





# Galvalloy Surface





# **Galvalloy Surface**





## Galvalloy Cut-Edge





## Galvalloy Cut-Edge







# Summary of Video





Primary zinc dendrites

> Primary zinc remains intact

Corrosion of both primary and eutectic phases



Initial anodic attack В



Preferential corrosion of eutectic phase





# SEM Imaging



#### <u>Aims</u>

To find out:

- If etching has an effect on the mechanism
- Which regions are the initiation site for corrosion

#### <u>Requirements</u>

Take images before and after of a region exposed to electrolyte with etched and unetched samples

#### <u>Method</u>

- Metallurgically prepared two samples, etching only one
- Immersed the samples in electrolye for 30 mins to initiate corrosion
- Examined in desktop SEM

# Unetched





A D6.0 x120 500 um





# Etched





A D8.0 x120 500 um















#### Change of mechanism

- Corrosion on the surface initiates in the binary eutectic
- In cut-edge the corrosion initiates in the zinc dendrites
- Suspected that the oxide layers are the cause
- Steel then polarises the surface and acts as cathode

No etching effect

Current work

 Conducting RDE on pure phases to deduce cathodic activity



# Thanks for Listening

Thank you to The Materials Processing Institute and Worshipful Company of Armourers and Brasiers







Engineering and Physical Sciences **Research** Council





Welsh Governmen

**Cronfa Gymdeithasol Ewrop European Social Fund**